1.向量可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。
2.规定若线段AB的端点A为起点,B为终点,则线段就具有了从起点A到终点B的方向和长度。具有方向和长度的线段叫做有向线段。
3.向量的模:向量的大小,也就是向量的长度(或称模)。向量a的模记作|a|。
注:向量的模是非负实数,是可以比较大小的。因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。
4.单位向量:长度为一个单位(即模为1)的向量,叫做单位向量.与向量a同向,且长度为单位1的向量,叫做a方向上的单位向量,记作a0。
5.长度为0的向量叫做零向量,记作0。零向量的始点和终点重合,所以零向量没有确定的方向,或说零向量的方向是任意的。
1.单位向量:单位向量a0=向量a/|向量a|
2.P(x,y)那么向量OP=x向量i+y向量j |向量OP|=根号(x平方+y平方)
3.P1(x1,y1)P2(x2,y2) 那么向量P1P2={x2-x1,y2-y1} |向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]
4.向量a={x1,x2}向量b={x2,y2} 向量a*向量b=|向量a|*|向量b|*Cosα=x1x2+y1y2 Cosα=向量a*向量b/|向量a|*|向量b| (x1x2+y1y2) =根号(x1平方+y1平方)*根号(x2平方+y2平方)
5.空间向量:同上推论 (提示:向量a={x,y,z})
6.充要条件: 如果向量a⊥向量b 那么向量a*向量b=0 如果向量a//向量b 那么向量a*向量b=±|向量a|*|向量b| 或者x1/x2=y1/y2
7.|向量a±向量b|平方 =|向量a|平方+|向量b|平方±2向量a*向量b =(向量a±向量b)平方