求函数的定义域需要从这几个方面入手:
(1)分母不为零;
(2)偶次根式的被开方数非负;
(3)对数中的真数部分大于0;
(4)指数、对数的底数大于0,且不等于1;
(5)y=tanx中x≠kπ+π/2;
y=cotx中x≠kπ等等
值域是函数y=f(x)中y的取值范围
常用的求值域的方法:
(1)化归法;
(2)图象法(数形结合),
(3)函数单调性法,
(4)配方法,
(5)换元法,
(6)反函数法(逆求法),
(7)判别式法,
(8)复合函数法,
(9)三角代换法,
(10)基本不等式法等
定义域指的是自变量的取值范围;值域是指因变量的取值范围。
自变量是指研究者主动操纵,而引起因变量发生变化的因素或条件,因此自变量被看作是因变量的原因。因变量(dependent variable),函数中的专业名词,函数关系式中,某些特定的数会随另一个(或另几个)会变动的数的变动而变动,就称为因变量。
(1)在函数y=f(x)中,定义域指的是自变量x的所有取值所构成的“集合”(或“区间”)。
(2)定义域要表示成集合形式或区间形式。
(3)当定义域中的x的取值个数有限时,则不能表示成区间形式,而只能表示成集合形式。