正约数表示正的约数。约数:又称因数,a除以整数b(b≠0)除得的商正好是整数而没有余数,就是a能被b整除,或b能整除a。a称为b的倍数,b称为a的约数。约数是有限的,一般用最大公约数。所有数都有约数1,和数字本身。
1、正约数表示正的约数。
2、约数:如果一个整数能被两个整数整除,那么这两个数就是这个数的约数。约数是有限的,一般用最大公约数。所有数都有约数1.
3、例:15能被3整除,我们就说15是3的倍数,3是15的约数。
4、如果是求所有公约数,那么还是用15举例:15首先能被1整除,及1、15,再考虑2,显然不行,随后考虑3,发现能整除,及3、4显然不行,以此类推。最后所有公约数就是1、3、5、15。
正约数个数公式:D=(n+1)(m+1)。正因数,或称为正约数,指的是一个整数中大于0的因数。如:12的正因数有1,2,3,4,6,12。因数必须是整数,所以任何整数的最小正因数都是1。
小学数学定义:假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。