向量平行的公式为:a//b→a×b=xn-ym=0
1、空间向量,如果一条直线与一平面平行,那么直线的方向向量与平面的法向量关系:直线方向向量s与平面法向量n的数量积为0。即:sn=0。直线与平面平行时,直线方向向量s与平面法向量n是垂直的关系。
2、必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即∣b∣=m∣a∣。那么当向量a与b同方向时,令λ=m,有b=λa,当向量a与b反方向时,令λ=-m,有b=λa。如果b=0,那么λ=0。3)唯一性:如果b=λa=μa,那么(λ-μ)a=0。但因a≠0,所以λ=μ。证毕。
3、向量,最初被应用于物理学。很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量。大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到。
向量平行(共线)条件的两种形式:
1、a=λb,则a∥b。
2、设a(x1,y1)、b(x2,y2),若x1y2=y1x2,则a∥b。
相等的向量一定平行,但是平行的向量并不一定相等。两个向量相等并不一定这两个向量一定要重合。只用这两个向量长度相等且方向相同即可。