1、树立类比思想意识,理解二次函数:深刻理解二次函数,尤其是函数的图象与性质,图象和性质是解决一切与二次函数有关问题的根本力量。因而,学生需要主动理解、深刻解读二次函数,而深刻理解之道在于类比思想。
2、熟悉一些简单二次函数的图像。
3、学会转换函数,例如y=2x^2-4x+3可以转换成顶点式y=2(x-1)^2+1
4、学会二次函数的求根公式与图像。
5、经历探索、分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
1、二次函数的定义和知识点:形如y=ax^2+bx+c(a≠0,其中a、b、c是常数)的函数为二次函数。
(1)、a决定抛物线的开口方向和形状大小,当a>0时,开口向上,当a<0时开口向下;︱a︱的值越大,开口就越小;当b=0时,抛物线的轴对称是Y轴;当c=0时,抛物线经过原点;当b和c同时为0时,其顶点就是原点。
(2)、抛物线y=ax2+bx+c(a≠0)与Y轴的交点坐标为(0,c);求与X轴的两个交点坐标的方法是令y=0,然后解关于ax2+bx+c=0的方程,得出的x的解就是与x轴的交点的横坐标。
2、会求与二次函数y=ax^2+bx+c(a≠0)关于X轴、关于Y轴或者关于顶点对称的新二次函数的解析式。
(1)与二次函数y=ax^2+bx+c(a≠0)关于X轴对称的新解析式为y=-ax^2-bx-c即a、c、b都变成相反数。
(2)关于Y轴对称的新解析式为y=ax^2-bx+c,即a和c不变,b变成相反数。 即a和c不变,b变成相反数。