1、有理数:是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题、填空题、计算题的形式出现,难易度属于简单。
【考察内容】
复数以及混合运算(期中、期末必考计算)、数轴、相反数、绝对值和倒数(选择、填空)。
2、整式的加减:中考试题中分值约为4分,题型以选择和填空题为主,难易度属于易。
【考察内容】
①整式的概念和简单的运算,主要是同类项的概念和化简求值;
②完全平方公式,平方差公式的几何意义;
③利用提公因式法和公式法分解因式。
3、一元一次方程:是初一学习的重点内容,主要学习内容有(归纳、总结、延伸)应用题思维、步骤、文字题,根据已知条件求未知。中考分值约为1-3分,题型主要以选择和填空题为主,极少出现简答题,难易度为易。
【考察内容】
①方程及方程解的概念;
②根据题意列一元一次方程;
③解一元一次方程。
题型:追击、相遇、时间速度路程的关系、打折销售、利润公式。
一次函数:
①若两个变量X,Y间的关系式可以表示成Y=KX+B(B为常数,K不等于0)的形式,则称Y是X的一次函数
②当B=0时,称Y是X的正比例函数。
一次函数的图象:
①把Y=KX+B个函数的自变量X与对应的因变量Y的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
②正比例函数Y=KX的图象是经过原点的一条直线。
③在一次函数中,当K〈0,B〈O,则经234象限;当K〈0,B〉0时,则经124象限;当K〉0, B〈0时,则经134象限;当K〉0,B〉0时,则经123象限。
④当K〉0时,Y的值随X值的增大而增大,当X〈0时,Y的值随X值的增大而减少。
二次函数;
①自变量x和因变量y之间关系可表示成y=ax^2+bx+c,则称a是y的二次函数。
二次函数的图象:
①如果二次项系数是正,那么开口向上,y的范围为y>=k
②如果二次项系数是负,那么开口向下,y的范围为y<=k
③当a>0时,二次函数图象向上开口;当a<0时,抛物线向下开口。
④当|a|越大,则二次函数图像的开口越小。
直角三角形的判定方法:
判定1:定义,有一个角为90°的三角形是直角三角形。
判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)