根的意思就是方程的解。方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
方程的根就是方程的解。方程的根是使方程左、右两边相等的未知数的取值。一元二次方程根和解不同,根可以是重根,解一定不同,一元二次方程若有2个不同根,又称有2个不同解。
另外在解分式方程、无理方程、对数方程时,需化为整式方程,有时会产生增根——使原方程无意义的未知数取值,此时该值便不是原方程的解。对于多元方程,方程的根可以叫方程的解,但方程的解不一定可以叫方程的根。
1、定义不同
解,是数学上的“解”,使得方程中等号两边相等的未知数的值叫做方程的解。
所谓方程的根是使方程左、右两边相等的未知数的取值。
2、一元二次方程中不同
一元二次方程根和解不同,根可以是重根,而解一定是不同的,一元二次方程如果有2个不同根,又称有2个不同解。
3、类型不同
解:不是所有的方程都有解,或者只有唯一解。有一些方程在实数的范围内没有解,称为无解方程;有一些方程有唯一的解;有一些方程有两个或者更多特定数量的解;也有一些方程有无穷个解。
根:重根,在一元方程中方程的解可能会受到某些实际条件的限制,如:一道关于每天生产多少零件的应用题的函数符合x^2-10x-24=0,此方程的根:x=12,x2=-2,虽然x=-2符合方程的根的条件。
方程是法国数学家韦达首创。韦达最重要的贡献是对代数学的推进,他最早系统地引入代数符号,推进了方程论的发展。韦达用“分析”这个词来概括当时代数的内容和方法。
他创设了大量的代数符号,用字母代替未知数,系统阐述并改良了三、四次方程的解法,指出了根与系数之间的关系。给出三次方程不可约情形的三角解法。著有《分析方法入门》、《论方程的识别与订正》等多部著作。