一个以弧度为单位的圆(一个圆周为2П,即:360度=2П),在单位时间内所走的弧度即为角速度。公式为:ω=Ч/t(Ч为所走过弧度,t为时间)ω的单位为:弧度每秒。最原始的角速度公式:单位时间转过的角度除以所用时间,速度单位,弧度每秒,rad/s。即角速度W=2兀/T,T为转动周期或者角速度W=V/R,V是线速度,R为半径。
假设某质点做圆周运动,在Δt时间内转过的角为Δθ.Δθ与Δt的比值,描述了物体绕圆心运动的快慢,这个比值叫做角速度,用符号ω表示:ω=|Δθ|÷Δt。
角速度ω是矢量。按右手螺旋定则,大拇指方向为ω方向。当质点作逆时针旋转时,ω向上;作顺时针旋转时,ω向下。
角坐标φ和角位移Δφ不是矢量。令Δt→0,则角位移Δφ以零为极限,称为无限小角位移。无限小角位移忽略高阶无穷小量后称为微分角位移,记为dφ.可以证明,dφ是矢量.进而,角速度ω=dφ/dt也是矢量。
角速度ω是伪矢量。右手系改为左手系时,角速度反向.其本质是二阶张量(Ω),而一般矢量的本质是一阶张量,因此,矢量是角速度的简便表达,张量是角速度的准确表达。