1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p==
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2(a-b)2
常用公式:(x+m)(x+n)=
4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
5、互为余角和互为补角和
6、两直线平行的条件:(角的关系线的平行)
①相等,两直线平行;
②相等,两直线平行;
③互补,两直线平行.
7、平行线的性质:两直线平行。(线的平行
8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
9、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求平均值。
10、三角形
(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(6)等腰三角形:(a)知边求边、周长方法(b)知角求角方法(c)三线合一:
(7)等边三角形:
11、会判轴对称图形,会根据画对称图形,(或在方格中画)
12、常见的轴对称图形有:
13、(1)等腰三角形:对称轴,性质
(2)线段:对称轴,性质
(3)角:对称轴,性质
14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线
(4)作角的平分线(5)作三角形
1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)。
2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式。
3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
4、加减混合运算的方法和步骤
(1)将减法统一成加法,并写成省略加号的和的形式;
(2)运用加法的交换律和结合律,简化运算。
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0。
6、有理数乘法步骤:先确定积的符号;再计算绝对值的积。
7、倒数:乘积是1的两个数互为倒数。
8、有理数的除法法则
(1)除以一个数等于乘以这个数的倒数;
(2)两数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于零的数,都得0。
9、乘方的有关概念
(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,a n读作:a的n 次方(或a的n次幂)。
(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数。
10、科学计数法
把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法。
11、有理数的混合运算顺序
(1)先算乘方,再算乘除,最后算加减;
(2)同级运算,按照从左至右的顺序依次进行;
(3)如果有括号,就先算小括号,再算中括号,然后算大括号。
12、近似数:与实际很接近的数。
13、精确度:反映近似数的精确程度的量.一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位。
14、计算器的组成:计算器的面板由显示器和按键组成。