有理数
1、像5,1,2…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2。
2、在正数前面加上“—”号的数叫做负数,如-10,-3,…。
3、0既不是正数也不是负数。
4、整数和分数统称为有理数。
数轴
1、数轴:规定了原点、正方向和单位长度的直线。
2、数轴的三要素:原点、正方向、单位长度。
3、所有的有理数都可以用数轴上的点表示。
4、相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
整式的加减
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
一元一次方程
1、等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!
2、等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3、方程:含未知数的等式,叫方程。
4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。
1、“三线八角”
①如何由线找角:一看线,二看型。
同位角是“F”型;
内错角是“Z”型;
同旁内角是“U”型。
②如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理,性质定理
条件,结论,条件,结论
同位角相等,两直线平行,两直线平行,同位角相等
内错角相等,两直线平行,两直线平行,内错角相等
同旁内角互补,两直线平行,两直线平行,同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的.任意两边之和大于第三边;
三角形的任意两边之差小于第三边。
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;
任意多边形的外角和等于360°。