1、三个重要的定义
(1)正数:像1、2.5、245、这样大于0的数叫做正数;(2)负数:在证书前面加上“一”号,表示比0小的数叫做负数;(3)0既不是正数也不是负数。
2、有理数的分类
(1)按定义分类:有理数分为整数(正整数、0、负整数)、分数(正分数、负分数)。
(2)按性质符号分类:正有理数(正分数、正整数)、0、负有理数(负整数、负分数)。
3、数轴
数轴有三要素:原点、正方向、单位长度。画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定上向右的方向为正方向,就得到数轴。在数轴上的所表示的数,右边的数总比左边的数大,所以正数都大于0,负数都小于0,正数大于负数。
4、相反数如果两个数只有符号不同,其中一个数就叫另一个数的相反数。0的相反数是0,互为相反数的两个数,在数轴上位于原点的两侧,并且与原点的距离相等。
5、绝对值
(1)绝对值的几何意义:一个数的绝对值就是数轴上表示该数的点与原点的距离
(2)绝对值的代数意义:一个正数的绝对值是它本身;0的绝对值是个负数的绝对值是它的相反数。
(3)两个负数比较大小,绝对值大的反而小,绝对值小的反而大
1、单项式的定义:
由数或字母的积组成的式子叫做单项式。
说明:单独的一个数或者单独的一个字母也是单项式.
2、单项式的系数:
单项式中的数字因数叫这个单项式的系数.
说明:
⑴单项式的系数可以是整数,也可能是分数或小数。如3x的系数是3的32
系数是1;4.8a的系数是4.8; 3
⑵单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,
4xy2的系数是4;2x2y的系数是4;
⑶对于只含有字母因数的单项式,其系数是1或-1,不能认为是0,如?ab的
系数是-1;ab的系数是1;
⑷表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。如2πxy的系数就是2.
3、单项式的次数:
一个单项式中,所有字母的指数的和叫做这个单项式的次数.
说明:
⑴计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1
的情况。如单项式2xyz的次数是字母z,y,x的指数和,即4+3+1=8,
而不是7次,应注意字母z的指数是1而不是0;
⑵单项式的指数只和字母的指数有关,与系数的指数无关。
⑶单项式是一个单独字母时,它的指数是1,如单项式m的指数是1,单项式是单独的一个常数时,一般不讨论它的次数;
1、有理数的加法:
(1)有理数加法法则:
①同号两数相加,去相同的符号,并把绝对值相加;
②绝对值不相等的异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值;
③互为相反数的两个数相加结果为0;
④一个数同0相加,仍得这个数。
(2)有理数加法的运算律:
加法的交换律:a+b+c=a+(b+c);
加法的结合律:(a+b)+c=a+(b+c)
用加法的运算路进行简便运算的基本思路是:先把互为相反数得数相加;把同分母的分数先相加;把相加得整数的数先相加。
2、有理数的减法:
(1)有理数减法法则:减去一个数等于加上这个数的相反数。
(2)有理数减法常见错误:顾此失彼,没有顾到结果的符号;仍用小学计算的习惯不把减法变加法;只改变运算符号,不改变减数的符号,没有把减数变成相反数。
(3)有理数加法混合运算步骤:先把减法变成加法,再按有理数加法法则进行运算。
3、有理数的乘法
(1)有理数乘法的法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。
(2)有理数乘法的运算律:交换律:ab=ba;结合律:(ab)c=a(bc);交换律:a(b+c)=ab+ac
(3)倒数的定义:乘积是1的两个有理数互为倒数,即ab=1,那么a和b互为倒数;倒数也可以看成是把分子分母的位置颠倒过来。
4、有理数的除法
有理数除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数。这个法则可以把除法转化为乘法;除法法则也可以看成是:两个数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都等于0.5。