1、菱形的定义:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质:⑴矩形具有平行四边形的一切性质;
⑵菱形的四条边都相等;
⑶菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
⑷菱形是轴对称图形。
提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。
3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。
4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)
5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。
6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。
7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。
8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。
9、中被开方数的取值范围:被开方数a≥0
10、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。
一、代数式的定义:
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。
注意:(1)单个数字与字母也是代数式;(2)代数式与公式、等式的区别是代数式中不含等号,而公式和等式中都含有等号;(3)代数式可按运算关系和运算结果两种情况理解。
三、整式:单项式与多项式统称为整式。
1.单项式:数与字母的积所表示的代数式叫做单项式,单项式中的数字因数叫做单项式的系数;单项式中所有字母的指数的和叫做单项式的次数。特别地,单独一个数或者一个字母也是单项式。
2.多项式:几个单项式的和叫做多项式,在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项;在多项式里,次数最高项的次数就是这个多项式的次数。
四、升(降)幂排列:
把一个多项式按某一个字母的指数从小到大(或从大到小)的顺序排列起来,叫做把多项式按这个字母升(降)幂排列。
五、代数式书写要求:
1.代数式中出现的乘号通常用“·”表示或者省略不写;数与字母相乘时,数应写在字母前面;数与数相乘时,仍用“×”号;
2.数字与字母相乘、单项式与多项式相乘时,一般按照先写数字,再写单项式,最后写多项式的书写顺序.如式子(a+b)·2·a应写成2a(a+b);
3.带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;
4.在代数式中出现除法运算时,按分数的写法来写;
5.在一些实际问题中,有时表示数量的代数式有单位名称,如果代数式是积或商的形式,则单位直接写在式子后面;如果代数式是和或差的形式,则必须先把代数式用括号括起来,再将单位名称写在式子的后面,如2a米,(2a-b)kg。
六、系数与次数
单项式的系数和次数,多项式的项数和次数。
1.单项式的系数:单项式中的数字因数叫做单项式的系数。
注意:(1)单项式的系数包括它前面的符号;
(2)若单项式的系数是"1”或-1“时,"1"通常省略不写,但“-”号不能省略。
2.单项式的次数:单项式中所有字母的指数和叫做单项式的次数。
注意:(1)单项式的次数是它含有的所有字母的指数和,只与字母的指数有关,与其系数无关;
(2)单项式中字母的指数为1时,1通常省略不写,在确定单项式的次数时,一定不要忘记被省略的1。
3.多项式的次数:多项式中次数最高的项的次数就是多项式的次数.
4.多项式的项数:在多项式中,每个单项式都叫做多项式的项,其中不含字母的项称为常数项。一个多项式有几项,就叫几项式,它的项数就是几。多项式的项数实质是“和”中单项式的个数。
七、列代数式:
用含有数、字母和运算符号的式子把问题中的数量表示出来就是列代数式。
正确列出代数式,要掌握以下几点:
(1)列代数式的关键是理解和找出问题中的数量关系;
(2)要掌握一些常见的数量关系如行程问题、工程问题、浓度问题、数字问题等;
(3)要善于抓住问题中的关键词语,如和、差、积、商、大、小、几倍、平方、多、少等。