初中数学知识点大全涵盖了多个重要领域,包括但不限于:
有理数与实数:包括有理数的定义、数轴、相反数、绝对值等基本概念。
方程:一元一次方程的概念、解法及步骤。
函数:一次函数、反比例函数、二次函数的基本概念和应用。
代数式与方程:包括乘法与因式分解、幂的运算性质、二次根式、三角不等式等。
几何基础:平面直角坐标系、多边形内角和公式、平行线段成比例定理、直角三角形中的射影定理等。
三角学:锐角三角形的性质、正(余)弦定理、三角函数公式等。
统计与概率:统计初步、频率与概率的基本概念和应用。
为了帮助学生学习和记忆,建议家长将相关知识点制作成易于查看的图片或笔记,以便学生随时复习和巩固。
一、平移变换:
1、概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。
2、性质:(1)平移前后图形全等;
(2)对应点连线平行或在同一直线上且相等。
3、平移的作图步骤和方法:
(1)分清题目要求,确定平移的方向和平移的距离;
(2)分析所作的图形,找出构成图形的关健点;
(3)沿一定的方向,按一定的距离平移各个关健点;
(4)连接所作的各个关键点,并标上相应的字母;
(5)写出结论。
二、旋转变换:
1、概念:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。
说明:
(1)图形的旋转是由旋转中心和旋转的角度所决定的;
(2)旋转过程中旋转中心始终保持不动。
(3)旋转过程中旋转的方向是相同的。
(4)旋转过程静止时,图形上一个点的旋转角度是一样的。⑤旋转不改变图形的大小和形状。
2、性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等。
3、旋转作图的步骤和方法:
(1)确定旋转中心及旋转方向、旋转角;
(2)找出图形的关键点;
(3)将图形的关键点和旋转中心连接起来,然后按旋转方向分别将它们旋转一个旋转角度数,得到这些关键点的对应点;
(4)按原图形顺次连接这些对应点,所得到的图形就是旋转后的图形。
说明:在旋转作图时,一对对应点与旋转中心的夹角即为旋转角。
1、比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d
2 、合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d
3、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b
4 、平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例
5 、推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
6 、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
7、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比
1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数、单项式指的是数或字母的积的代数式、单独一个数或一个字母也是单项式、因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式、
2、单项式的系数:是指单项式中的数字因数;
3、单项数的次数:是指单项式中所有字母的指数的和、
4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式、每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式、特别注意多项式的项包括它前面的性质符号、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。单项式和多项式统称为整式。