1、区间法,这类方法也成为排除法,靠着大概计算出的数据或者猜一些数据。比如一个题目里给了几个角度,30°,90°。很明显,答案里就肯定是90±30度,120加减30度。或者一些与30,60,90度有关的答案。
2、代入法,这列方法往往是给定了一些条件,比如a大于等于0,小于等于1。b大于等于1,小于等于2.这些给定了一些特殊的条件,然后让你求一个ab组合在一起的一些式子,可能会很复杂。但是如果是选择题,你可以取a=0.5,b=1.5试一试。还有就是可以把选项里的答案带到题目中的式子来计算。
3、函数法,这个就是要把一些计算转化为函数,首先带入答案,之后移项,把方程一边变成零,然后就可以把函数的表达式大概画出来,看与零点有没有唯一焦点,这样就可以大概判断答案,或者找最接近零点的答案。
1、选择与填空中出现不等式的题目,优选特殊值法,选取中间值带入,选取好算易得的;
2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法,将各种函数模型牢记于心,每个模型特点也要牢记;
3、函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”,函数的零点就是方程的根。
4、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如恒过的定点,二次函数的对称轴,三角函数的周期等;
5、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;
6、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,采取分离常数,最终变为恒成立问题,求最值;
7、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);
8、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;
9、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;
10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;