内心性质
设△ABC的内切圆为☉O(半径r),角A、B、C的对边分别为a、b、c,p=(a+b+c)/2,三角形内心为I:
1、三角形的三个角平分线交于一点,该点即为三角形的内心。
2、三角形的内心与三角形位置关系:现有AI交BC于点D;BI交CA于点E;CI交AB于点F,三角形内接圆分别交BC,CA,AB于X,Y,Z。
(i)IX:IY:IZ=1:1:1
(ii)BD:DC=b:c;CE:EA=c:a;AF:FB=a:b
(iii)BX:XC=(p-b):(p-c);CY:YA=(p-c):(p-a);AZ:ZB=(p-a):(p-b)
(iv)AI:BI:CI=(1/sin(A/2)):(1/sin(B/2)):(1/sin(C/2))
(v)△IBC,△ICA,△IAB面积比为a:b:c
3、r=S/p。
4、△ABC中,∠C=90°,r=(a+b-c)/2。
5、∠BOC=90°+∠A/2。
6、点O是平面ABC上任意一点,点O是△ABC内心的充要条件是:
a(向量OA)+b(向量OB)+c(向量OC)=向量0。
7、点O是平面ABC上任意一点,点I是△ABC内心的充要条件是:
向量OI=[a(向量OA)+b(向量OB)+c(向量OC)]/(a+b+c)。