两个直角三角形的一条直角边和斜边对应相等,这两个直角三角形是全等三角形。在全等三角形证明中,直角三角形由于其特殊性,有专属于直角三角形的判定方法。斜边、直角边定理,斜边和一条直角边分别相等的两个直角三角形全等,可以简写成“斜边、直角边”或“HL”。
1、直角三角形两直角边的平方和等于斜边的平方。∠BAC=90°,则AB2+AC2=BC2(勾股定理)。
2、在直角三角形中,两个锐角互余。
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
1、三角形两边之和大于第三边,两边之差小于第三边。
2、在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
3、直角三角形斜边的中线等于斜边的一半。
4、直角三角形两直角边的平方和等于斜边的平方。
5、三角形三条中线的长度的平方和等于它的三边的长度平方和的3/4。
6、等底同高的三角形面积相等。
7、底相等的三角形的面积之比等于其高之比,高相等的三角形的面积之比等于其底之比。
8、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
9、等腰直角三角形三边之比为1:1:根号二。