二次根式的加减法法则为:
1、先化简:首先把各个二次根式化简成最简二次根式;
2、再合并:把同类二次根式分别合并后相加减。将几个二次根式化简为最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
根式的加减法法则是根式的运算法则之一,具体内容为:若干根式相加减,先把各根式化成最简根式,再合并同类根式,并将不同类的根式用运算符号连写在一起。
同类根式亦称相似根式,是代数学术语,指做加减法时允许合并的诸根式,当几个根式化成最简根式后,如果它们的根指数和被开方数分别都相同,那么这些根式称为同类根式。在根式的加减法中,同类根式要合并。一般地,几个根式总可以化成同次根式,但不一定能化成同类根式。
二次函数的定义:一般地,我们把形如√a(a≥0)的式子叫做二次根式,a称为被开方数,“√”称为二次根号。
二次根式的性质:
1、任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是√a,则a的另一个平方根为﹣√a;最简形式中被开方数不能有分母存在。
2、零的平方根是零。
3、负数的平方根也有两个,它们是共轭的。
4、有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。