生活中有的量很难或没有必要用准确数表示,而是用一个有理数近似地表示出来,我们称这个有理数为这个量的近似数。如长江的长约为6300km,这里的6300km就是近似数。因此,我们把接近准确数而不等于准确数的数,叫做这个数的近似数或近似值。
近似数在生活中的作用是便于计算。
与实际数字比较接近,但不完全符合的数称之为近似数。对近似数,人们常需知道他的精确度。一个近似数的精确度通常有以下两种表述方式:用四舍五入法表述。
一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位。另外还有进一和去尾两种方法。用有效数字的个数表述。
用四舍五入得到的近似数,从左边第一个不是零的数字起,到末位数字为止的数所有数字,都叫做这个数的有效数字。
1.四舍五入法
这种最常用的求近似数的方法,主要是看它省略的尾数是4或比4小时,就把尾数舍去;如果省略的尾数最高位上的数是5或比5大时,把尾数省略去掉后,要向前一位进一。如3096401≈310万,1÷3=0.333……≈0.3。从上面两例可以看出“四舍”时近似数比准确值小,“五入”时近似数比准确值大。
2.进一法
在实际生活中,有时把一个数的尾数省略后,不管尾数最高位上的数是几,都要向前一位进一。例如同学们去划船,每只船上最多能载6个同学,39个同学共需几只船?39÷6=6.5,就是说39个同学需要6只船还余3人,这3人还需一只船,所以一共需要7只船。即39÷6=6.5≈7(只),用进一法得到的近似数总比准确值大。
3.去尾法
在实际生活中,有时把一个数的尾数省略后,不管尾数的最高位上的数是几,都不要向它的前一位进一。如做一套学生服需要布2.45米。服装厂购进320米布可以做多少套学生服?320÷2.45=130.61……,就是说320米布可以做130套学生服,还余约1.5米,1.5米不够做一套学生服,即320÷2.45≈130(套)。用去尾法得到的近似数总比准确数小。