不等式就是用大于,小于,大于等于,小于等于连接而成的数学式子。
如果x>y>0,那么x的n次幂>y的n次幂(n为正数),x的n次幂<y的n次幂(n为负数)。
如果x>y,那么y<x;如果y<x,那么x>y;(对称性)
如果x>y,y>z;那么x>z;(传递性)
如果x>y,而z为任意实数或整式,那么x+z>y+z,即不等式两边同时加或减去同一个整式,不等号方向不变。
如果x>y,z>0,那么xz>yz ,即不等式两边同时乘以(或除以)同一个大于0的整式,不等号方向不变。
如果x>y,z<0,那么xz<yz, 即不等式两边同时乘以(或除以)同一个小于0的整式,不等号方向改变。
如果x>y,m>n,那么x+m>y+n。
如果x>y>0,m>n>0,那么xm>yn。
不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;
不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;
不等式的两边同时乘(或除以)同一个负数,不等号的方向变。
如果不等号两边的符号相同,那么取倒数后不等号要反向:
如 2<3,则1/2>1/3; -2>-3,则-1/2<-1/3。
如果不等号两边不同号,那么取倒数后,不等号方向不变:
如 -2<3,则-1/2<1/3。