初三网全国地区

请选择

    返回
    初三网 > 初中数学 > 数学知识点 > 正文

    中考数学二次函数知识点 2023冲刺中考必备

    文/宋艳平

    中考数学二次函数知识点:一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c,(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数

    中考数学二次函数知识点 2023冲刺中考必备

    中考数学二次函数知识点

    I.定义与定义表达式

    一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

    (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

    二次函数表达式的右边通常为二次三项式。

    II.二次函数的三种表达式

    一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

    顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

    交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]

    注:在3种形式的互相转化中,有如下关系:

    h=-b/2ak=(4ac-b^2)/4ax₁,x₂=(-b±√b^2-4ac)/2a

    III.二次函数的图像

    在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

    IV.抛物线的性质

    1.抛物线是轴对称图形。对称轴为直线x=-b/2a。

    对称轴与抛物线的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

    2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

    3.二次项系数a决定抛物线的开口方向和大小。

    当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。

    4.一次项系数b和二次项系数a共同决定对称轴的位置。

    当a与b同号时(即ab>0),对称轴在y轴左;

    当a与b异号时(即ab<0),对称轴在y轴右。

    5.常数项c决定抛物线与y轴交点。

    抛物线与y轴交于(0,c)

    6.抛物线与x轴交点个数

    Δ=b^2-4ac>0时,抛物线与x轴有2个交点。

    Δ=b^2-4ac=0时,抛物线与x轴有1个交点。

    Δ=b^2-4ac<0时,抛物线与x轴没有交点。

    X的取值是虚数(x=-b±√b^2-4ac的值的相反数,乘上虚数i,整个式子除以2a)

    V.二次函数与一元二次方程

    特别地,二次函数(以下称函数)y=ax^2+bx+c,

    当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0

    此时,函数图像与x轴有无交点即方程有无实数根。函数与x轴交点的横坐标即为方程的根。

    2023冲刺中考必备二次函数知识点

    1.一次项系数b和二次项系数a共同决定对称轴的位置。
    当a与b同号时(即ab>0),对称轴在y轴左;
    当a与b异号时(即ab<0),对称轴在y轴右。

    2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

    3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.
    4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:
    (1)图象与y轴一定相交,交点坐标为(0,c);
    (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
    (a≠0)的两根.这两点间的距离AB=|x?-x?|
    当△=0.图象与x轴只有一个交点;
    当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

    5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.
    顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.
    6.用待定系数法求二次函数的解析式
    (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
    y=ax^2+bx+c(a≠0).
    (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).
    (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

    相关阅读

    2023年吕梁多少分能上普通高中

    2023-02-08

    电大中专一年制学费多少钱 电大中专有用吗

    2023-02-08

    邯郸有哪些高中 哪个高中好

    2023-02-08

    2023年德宏初三考高中多少分录取

    2023-02-08

    2023年吕梁多少分能上高中

    2023-02-08

    安徽最好的职业学校 2023安徽职校名单

    2023-02-08

    2023年鹰潭中考报名时间公布

    2023-02-08

    2023年新余中考报名时间公布

    2023-02-08

    2023年萍乡中考报名时间公布

    2023-02-08

    2023年德宏多少分能上重点高中

    2023-02-08

    海口有哪些高中 哪个高中好

    2023-02-08

    2023年景德镇中考报名时间公布

    2023-02-08

    2023年德宏多少分能上普通高中

    2023-02-08

    人教版初中八年级上册语文书目录

    2023-02-08

    2023年赣州中考报名时间公布

    2023-02-08