积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-cosasinb
两式相加得:sinacosb=1/2[sin(a+b)+sin(a-b)]...(1)
两式相减得:cosasinb=1/2[sin(a+b)-sin(a-b)]...(2) cos(a+b)=cosacosb-sinasinb
cos(a-b)=cosacosb+sinasinb 两式相加得: cosacosb=1/2[cos(a+b)+cos(a-b)]...(3)
两式相减得:sinasinb=-1/2[cos(a+b)-cos(a-b)]...(4)
用(a+b)/2、(a-b)/2分别代替上面四式中的a,b 就可得到和差化积的四个式子。 如:(1)式可变为:
sina+sinb=2sin[(a+b)/2]*cos[(a-b)/2] 其它依次类推即可。