1.已知三角形底a,高h,则 S=ah/2
2.已知三角形三边a,b,c,则
(海伦公式)(p=(a+b+c)/2)
S=sqrt[p(p-a)(p-b)(p-c)]
=sqrt[(1/16)(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
=1/4sqrt[(a+b+c)(a+b-c)(a+c-b)(b+c-a)]
3.已知三角形两边a,b,这两边夹角C,则S= absinC,即两夹边之积乘夹角的正弦值。
4.设三角形三边分别为a、b、c,内切圆半径为r
则三角形面积=(a+b+c)r/2
5.设三角形三边分别为a、b、c,外接圆半径为R
则三角形面积=abc/4R
7.海伦——秦九韶三角形中线面积公式:
S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3
其中Ma,Mb,Mc为三角形的中线长.
8.根据三角函数求面积:
S= absinC/2 a/sinA=b/sinB=c/sinC=2R
注:其中R为外切圆半径。
使用底和高进行计算:找出三角形底和高的长度。三角形的“底”就是它的其中一条边,通常指位于底部的侧边。“高”是指从底边到三角形顶部最高点的长度。当你从三角形的底边向对面顶点作垂线,画出的这条线段就是三角形的高。这些信息应该是已知的,或是可以通过测量得到的。
写下用于计算三角形面积的公式。面积公式是:S=ah/2,这里的a是三角形的底边长,h是三角形的高。
将底边长和高带入公式。将两个数值相乘,然后用得到的结果乘以1/2,就能得到三角形面积的数值,单位是平方形式。
求直角三角形的面积。由于直角三角形的两条边是相互垂直的,因此,一条直角边相对于另一条直角边来说就是三角形的高,另一条边就是底边。因此,就算没有明确给出底边长和高,但如果已知两条直角边长,就相当于知道底边长和高了。接着,就可以用公式来计算三角形面积了。