请选择
极限的类型一共有五种,分别是零比零型,无穷大比无穷大型,零乘无穷大型,一的无穷大次方型,还有定积分类型。具体的求解方法如下:1、零比零型,可用洛必达求解。2、无穷大比无穷大型,可用洛必达。
极限的类型一共有五种,分别是零比零型,无穷大比无穷大型,零乘无穷大型,一的无穷大次方型,还有定积分类型。
具体的求解方法如下:
1、零比零型,可用洛必达求解。
2、无穷大比无穷大型,可用洛必达。
3、零乘无穷大型,把无穷或零放到分母上,化为零比零型或无穷大比无穷大型。
4、一的无穷大次方型,利用指数转换来求解。
5、定积分类型,可用洛必达求解。首先他的使用有严格的使用前提!必须是 X 趋近而不是N 趋近!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然 n 趋近是 x 趋近的一种情况而已,是必要条件(还有一点数列极限的 n 当然是趋近于正无穷的, 不可能是负无穷 !
(1)分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;
(2)无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;
(3)运用两个特别极限;
(4)运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小。比无穷小,分子分母还必须是连续可导函数。
(5)用Mclaurin(麦克劳琳)级数展开,而国内普遍译为Taylor(泰勒)展开。
(6)等阶无穷小代换,这种方法在国内甚嚣尘上,国外比较冷静。因为一要死背,不是值得推广的教学法;二是经常会出错,要特别小心。
(7)夹挤法。这不是普遍方法,因为不可能放大、缩小后的结果都一样。
(8)特殊情况下,化为积分计算。
了解最新的高考资讯
解读更多的报考技巧
1. 打开微信,搜索关注公众号“蝶变志愿”
2. 进入公众号免费获取兑换码
3. 输入兑换码,即可免费下载