1、一元二次方程是含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
2、一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一般情况下,一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
1、接开平方法
直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)²=n (n≥0)的方程,其解为x=±根号下n+m。
2、公式法
把一元二次方程化成一般形式,然后计算判别式△=b²-4ac的值,当b²-4ac≥0时,把各项系数a, b, c的值代入求根公式x=/(2a) , (b²-4ac≥0)就可得到方程的根。
一元二次方程的一般形式为:ax² + bx + c = 0,其中a、b、c为常数,且a≠0。
解一元二次方程的公式为:x = (-b ± √(b² - 4ac)) / 2a其中,±表示两个根,即正根和负根;√表示平方根;b² - 4ac被称为“判别式”,根据判别式的值可以判断方程有一个根、两个不相等的根或者无实根。