短除法
在求两个数的最大公约数时,如果无法进行质因数分解,可以采用短除法。短除法的步骤如下:将除数除以被除数得到商,然后用除数除以商得到余数,再用余数去除除数,如此反复,直到余数为零为止。最后将所有的除数相乘,得到的积即为最大公约数。
辗转相除法
辗转相除法是一种简单的求最大公约数的方法,其基本思想是:用较大的数除以较小的数得到商和余数,再用较小的数除以商得到新的商和余数,如此反复,直到余数为零为止。最后得到的积即为最大公约数。
最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
(1)如果两个自然数是互质数,那么它们的最大公约数是1,最小公倍数是这两个数的乘积。
例如8和9,它们是互质数,所以(8,9)=1,[8,9]=72。
(2)如果两个自然数中,较大数是较小数的倍数,那么较小数就是这两个数的最大公约数,较大数就是这两个数的最小公倍数。
例如18与3,18÷3=6,所以(18,3)=3,[18,3]=18。
(3)两个整数分别除以它们的最大公约数,所得的商是互质数。
例如8和14分别除以它们的最大公约数2,所得的商分别为4和7,那么4和7是互质数。