n(n-1)/2是等差数列求和公式。等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。
例如:1,3,5,7,9……(2n-1)。等差数列{an}的通项公式为:an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。在等差数列中,若Sn为该数列的前n项和,S2n为该数列的前2n项和,S3n为该数列的前3n项和,则Sn,S2n-Sn,S3n-S2n也为等差数列。
(n-1)+(n-2)+(n-3)+....+3+2+1
令:S=(n-1)+(n-2)+(n-3)+....+3+2+1
则根据等差数列可知:S=n(n-1)/2
因为n取非零自然数,n(n-1)表示连续相乘,也就是说,必定是,奇数×偶数或者偶数×奇数,不管哪种情况,n(n-1)必定是偶数,因此,n(n-1)必定能整除2
根据上述分析,n(n-1)整除2后,有可能是奇数也有可能是偶数。