三角函数与e指数变换是傅里叶变换。具体如下:根据欧拉公式e^jx=cosx+jsinx,任意正弦、余弦项可以用复指表示,即cosx=(e^jx+e^-jx)/2,sinx=(e^jx-e^-jx)/2j。
所以,任何一个周期函数f(x)既可以在三角函数系上表出也可以在复指数系1,e^jx,……,e^jnx上表出,在不同的坐标系之间,存在映射关系。
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。
e是“指数”(exponential)的首字母,也是欧拉名字的首字母。和圆周率 π 及虚单位 i 一样,e是最重要的数学常数之一。第一次把e看成常数的是雅各布·伯努利,他开始尝试计算lim(1+1/n)^n 的值,1727年欧拉首次使用小写字母 “e” 表示这常数,此后遂成标准。