1、乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)
2、三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b〈=〉-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|
3、一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
4、根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac〉0 注:方程有两个不等的实根b2-4ac〈0 注:方程没有实根,有共轭复数根
5、三角函数公式两角和公式
6、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
7、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
8、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
9、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
10、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
11、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
12、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
13、cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
14、tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
15、ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
公式表达式乘法与因式分解 :
a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b(a2+ab+b2)
三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b|
|a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系
韦达定理判别式:b2-4ac=0注:方程有两个相等的实根
b2-4ac>0 注:方程有两个不等的实根
b2-4ac<0 注:方程没有实根,有共轭复数根
1、长方形的周长=(长+宽)×2 C=(a+b)×2
2、正方形的周长=边长×4 C=4a
3、长方形的面积=长×宽 S=ab
4、正方形的面积=边长×边长 S=a.a= a
5、三角形的面积=底×高÷2 S=ah÷2
6、平行四边形的面积=底×高 S=ah
7、梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2
8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2
9、圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr