一元二次方程的解:-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根与系数的关系:X1+X2=-b/a X1*X2=c/a
韦达定理判别式:
b2-4ac=0 注:方程有两个相等的实根
b2-4ac\u003e0 注:方程有两个不等的实根
b2-4ac\u003c0 注:方程没有实根,有共轭复数根
三角函数公式 :
两角和公式:
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
倍角公式:
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式:
sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))
两角和与差的三角函数:
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB?
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
三角和的三角函数:
sin(α+β+γ)=sinαcosβcosγ+cosαsinβcosγ+cosαcosβsinγ-sinαsinβsinγ
cos(α+β+γ)=cosαcosβcosγ-cosαsinβsinγ-sinαcosβsinγ-sinαsinβcosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanαtanβtanγ)/(1-tanαtanβ-tanβtanγ-tanγtanα)
辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
倍角公式:
sin(2α)=2sinαcosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα