1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)。
2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式。
3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
4、加减混合运算的方法和步骤
(1)将减法统一成加法,并写成省略加号的和的形式;
(2)运用加法的交换律和结合律,简化运算。
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0。
6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.
7、倒数:乘积是1的两个数互为倒数。
8、有理数的除法法则
(1)除以一个数等于乘以这个数的倒数;
(2)两数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于零的数,都得0。
9、乘方的有关概念
(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,an读作:a的n次方(或a的n次幂)。
(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数。
10、科学计数法
把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法。
11、有理数的混合运算顺序
(1)先算乘方,再算乘除,最后算加减;
(2)同级运算,按照从左至右的顺序依次进行;
(3)如果有括号,就先算小括号,再算中括号,然后算大括号。
12、近似数:与实际很接近的数。
13、精确度:反映近似数的精确程度的量一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位。
14、计算器的组成:计算器的面板由显示器和按键组成。
有理数
1、像5,1,2…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2。
2、在正数前面加上“—”号的数叫做负数,如-10,-3,…。
3、0既不是正数也不是负数。
4、整数和分数统称为有理数。
数轴
1、数轴:规定了原点、正方向和单位长度的直线。
2、数轴的三要素:原点、正方向、单位长度。
3、所有的有理数都可以用数轴上的点表示。
4、相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
整式的加减
1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。
2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。
3、多项式:几个单项式的和叫多项式。
4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
一元一次方程
1、等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!
2、等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。
3、方程:含未知数的等式,叫方程。
4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。