1、乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。③乘积为1的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。②0不能作除数。
乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数、无理数:无限不循环小数叫无理数
平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。③每一个实数都可以在数轴上的一个点来表示。
3、代数式
代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。
4、整式与分式
整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
1、有理数减法法则:减去一个数等于加上这个数的相反数,即:a-b=a+(-b)。
2、加减法统一成加法:有理数的加减法运算可以通过有理数的减法法则将减法转化为加法,统一成只有加法运算的和式。
3、和式的写法:在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
4、加减混合运算的方法和步骤
(1)将减法统一成加法,并写成省略加号的和的形式;
(2)运用加法的交换律和结合律,简化运算。
5、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得0。
6、有理数乘法步骤:先确定积的符号;再计算绝对值的积.
7、倒数:乘积是1的两个数互为倒数。
8、有理数的除法法则
(1)除以一个数等于乘以这个数的倒数;
(2)两数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于零的数,都得0。
9、乘方的有关概念
(1)求n个相同因数的积的运算叫乘方,乘方的结果叫幂,a叫底,n叫指数,an读作:a的n次方(或a的n次幂)。
(2)正数的任何次幂都是正数;负数的奇次方幂是负数,偶次方幂是正数。
10、科学计数法
把一个大于10的数记成a×10n的形式,其中0≤a<10,n是正数,这种计数法叫做科学计数法。
11、有理数的混合运算顺序
(1)先算乘方,再算乘除,最后算加减;
(2)同级运算,按照从左至右的顺序依次进行;
(3)如果有括号,就先算小括号,再算中括号,然后算大括号。
12、近似数:与实际很接近的数。
13、精确度:反映近似数的精确程度的量一般地,一个近似数四舍五入到某一位,就说这个近似数精确到那一位。
14、计算器的组成:计算器的面板由显示器和按键组成。
初一下学期数学重要知识点总结
代数式:包括代数式的定义、整式(单项式与多项式)、升(降)幂排列、代数式的书写要求、系数与次数等。这是代数运算的基础,需要学生掌握代数式的构成和运算规则。
有理数:涉及有理数的概念、数轴、相反数、绝对值、有理数的混合运算等。这是数学运算的基础,特别是对于理解数的性质和运算规则非常重要。
一元一次方程:包括方程及方程解的概念、根据题意列一元一次方程、解一元一次方程等。这是解决实际问题的重要工具,需要学生掌握方程的解法和应用。
几何图形:包括基本的几何图形(如圆柱、圆锥、正方体、长方体等)和生活中的平面图形(如三角形、正方形、平行四边形等)。这是培养学生空间观念和几何直观能力的基础。
数据的收集与简单统计:涉及数据收集的方式、数据的整理和常见的统计图等。这是培养学生数据处理和分析能力的重要部分。
特殊值法和科学记数法:特殊值法是一种通过符合题目要求的数代入进行猜想的方法,而科学记数法是一种表示较大或较小数的方法。这两种方法在数学计算和问题解决中都有广泛应用。