1.①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r(R﹥r);④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)。
2.定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形。
3.正n边形的面积Sn=pnrn/2p表示正n边形的周长。
4.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4。
5.扇形面积公式:S扇形=n∏R/360=LR/2。
6.内公切线长=d-(R-r)外公切线长=d-(R+r)。
7.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
8.圆的内部可以看作是圆心的距离小于半径的点的集合。
9.相似三角形判定定理1两角对应相等,两三角形相似(ASA)。
10.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h。
11.菱形面积=对角线乘积的一半,即S=(a×b)÷2。
12.多边形内角和定理n边形的内角的和等于(n-2)×180°。
13.勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形。
14.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c。
15.等腰三角形的性质定理等腰三角形的两个底角相等。
正棱锥侧面积S=1/2c*h';正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l;球的表面积S=4pi*r2
圆柱侧面积S=c*h=2pi*h;圆锥侧面积S=1/2*c*l=pi*r*l
弧长公式l=a*r,a是圆心角的弧度数r〉0;扇形面积公式s=1/2*l*r
锥体体积公式V=1/3*S*H;圆锥体体积公式V=1/3*pi*r2h
斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长
正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径
余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F〉0
抛物线标准方程y2=2px,y2=-2px,x2=2py,x2=-2py
直棱柱侧面积S=c*h;斜棱柱侧面积S=c'*h