一、0是代数式
由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。通俗一点,代数式就是一个式子,可以由数字和字母组成,但是不能有等于号。单独的数字也叫代数式。所以0是代数式。
二、代数式分为有理式和根式
1.有理式包括整式(除数中没有字母的有理式)和分式(除数中有字母且除数不为0的有理式)。这种代数式中对于字母只进行有限次加、减、乘、除和整数次乘方这些运算。
整式有包括单项式(数字或字母的乘积,或者是单独的一个数字或字母)和多项式(若干个单项式的和)。
(1)单项式
没有加减运算的整式叫做单项式。
单项式的系数:单项式中的数字因数叫做单项式(或字母因数)的数字系数,简称系数。
单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
(2)多项式
几个单项式的代数和叫做多项式;多项式中每个单项式叫做多项式的项。不含字母的项叫做常数项。
多项式的次数:多项式里,次数最高的项的次数,就是这个多项式的次数。齐次多项式:各项次数相同的多项式叫做齐次多项式。
不可约多项式:次数大于零的有理系数的多项式,不能分解为两个次数大于零的有理数系数多项式的乘积时,称为有理数范围内不可约多项式。实数范围内不可约多项式是一次或某些二次多项式,复数范同内不可约多项式是一次多项式。
对称多项式:在多元多项式中,如果任意两个元互相交换所得的结果都和原式相同,则称此多项式是关于这些元的对称多项式。
同类项:多项式中含有相同的字母,并且相同字母的指数也分别相同的项叫做同类项。
2.我们把含有字母的根式、字母的非整数次乘方,或者是带有非代数运算的式子叫做无理式。无理式包括根式和超越式。我们把可以化为被开方式为有理式,根指数不带字母的代数式称为根式。