1.四条边都相等的四边形是菱形;
2.对角线互相垂直的平行四边形是菱形(对角线互相垂直且平分的四边形是菱形);
3.一组邻边相等的平行四边形是菱形;
4.一组对角线平分一组对角的平行四边形是菱形。
1.菱形具有平行四边形的一切性质;
2.菱形的四条边都相等;
3.菱形的对角线互相垂直平分且平分每一组对角;
4.菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;
5.菱形是中心对称图形。
假设一个菱形的周长为C,边长为a,高为b,两对角线分别为d和e,则有
菱形周长为:
1.由于菱形四边长都相等,因此周长等于四倍的边长即C=4a。
2.有勾股定理:C=2√(d2+e2)。
设一个菱形的面积为S,边长为a,高为b,两对角线分别为c和d,一个最小的内角为∠θ,则有:
1.S=ab(菱形和其他平行四边形的面积等于底乘以高);
2.S=cd÷2(菱形和其他对角线互相垂直的四边形的面积等于两对角线乘积的一半);
3.S=a^2·sinθ。