1、从一个角的顶点引出一条射线(线在角内),把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线。三角形三条角平分线的交点叫做三角形的内心。三角形的内心到三边的距离相等,是该三角形内切圆的圆心。
2、角平分线是在角的型内及形上,到角两边距离相等的点的轨迹。
1、角平分线分得的两个角相等,都等于该角的一半。(定义)
2、角平分线上的点到角的两边的距离相等。
角的内部到角的两边距离相等的点,都在这个角的平分线上。
因此根据直线公理。
证明:已知PD⊥OA于D,PE⊥OB于E,且PD=PE,求证:OC平分∠AOB
证明:在Rt△OPD和Rt△OPE中:
OP=OP,PD=PE
∴Rt△OPD≌Rt△OPE(HL)
∴∠1=∠2
∴OC平分∠AOB