性质
由于矩形是特殊的平行四边形,故包含平行四边形的性质;
矩形的性质大致总结如下:
(1)矩形具有平行四边形的所有性质:
对边平行且相等,对角相等,邻角互补,对角线互相平分;
(2)矩形的四个角都是直角;
(3)矩形的对角线相等;
(4)具有不稳定性(易变形)。
判定
矩形的常见判定方法如下:
(1)有一个角是直角的平行四边形是矩形。
(2)对角线相等的平行四边形是矩形。
(3)有三个角是直角的四边形是矩形。
(4)定理:经过证明,在同一平面内,任意两角是直角,任意一组对边相等的四边形是矩形。
(5)对角线相等且互相平分的四边形是矩形。
相关公式
面积:S=ab(注:a为长,b为宽)
周长:C=2(a+b)(注:a为长,b为宽)
图形学
矩形必须一组对边与x轴平行,另一组对边与y轴平行。不满足此条件的几何学矩形在计算机图形学上视作一般四边形。