定理1:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
定理2:平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
1、线面平行的条件是直线和平面平行如果一条直线和一个平面没有公共点,那么就说这条直线和这个平面平行。平面外一条直线,如果和平面内的一条直线平行,那么这条直线和这个平面平行。两平面平行,其中一个平面内的直线必平行于另一个平面。
2、线面平行定义为一条直线与一个平面无公共点,称为直线与平面平行。一条直线和一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。平面外一条直线与此平面的垂线垂直,则这条直线与此平面平行。
(1)利用定义:线面平行(即直线与平面无任何公共点);
(2)利用判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;(只需在平面内找一条直线和平面外的直线平行就可以)
(3)利用面面平行的性质:两个平面平行,则一个平面内的直线必然平行于另一个平面;
(4)空间向量法:即证明直线的向量与平面的法向量垂直,就可以说明该直线与平面平行。