1、正数和负数
(1)正数:大于0的数;负数:小于0的数;
(2)0既不是正数,也不是负数;
(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;
(4)-a不一定是负数,+a也不一定是正数;
(5)自然数:0和正整数统称为自然数;
(6)a>0,a是正数;a≥0,a是正数或0,a是非负数;
a<0,a是负数;a≤0,a是负数或0,a是非正数.
2.有理数
(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;
(2)正整数、0、负整数统称为整数;
(3)有理数的分类:
(4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)
(5)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;
(6)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;
(7)相反数:只有符号不同的两个数称为互为相反数;
(8)一般地,a的相反数是-a;特别地,0的相反数是0;
(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;
(10)a、b互为相反数a+b=0;(即相反数之和为0)
(11)a、b互为相反数或;(即相反数之商为-1)
(12)a、b互为相反数|a|=|b|;(即相反数的绝对值相等)
1、从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1)等式两边加(或减)同一个数(或式子),结果仍相等。
2)等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2、从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。