y = C(C为常数) , y' = 0
y=xn, y' = nxn-1
y = ax, y' = lna*ax
y = ex, y' = ex
y = logax , y' = 1 / (x*lna)
y = lnx , y' = 1/x
y = sinx , y' = cosx
y = cosx , y' = -sinx
y = tanx , y' = 1/cos2x = sec2x
y = cotx , y' = -1/sin2x= -csc2x
y = arcsinx , y' = 1 / √(1-x2)
y = arccosx , y' = - 1 /√(1-x2)
y = arctanx , y' = 1/(1+x2)
y = arccotx , y' = - 1/(1+x2)
设:指数函数为:y=a^x
y'=lim【△x→0】[a^(x+△x)-a^x]/△x
y'=lim【△x→0】{(a^x)[(a^(△x)]-a^x}/△x
y'=lim【△x→0】(a^x){[(a^(△x)]-1}/△x
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x…………(1)
设:[(a^(△x)]-1=M
则:△x=log【a】(M+1)
因此,有:‘
{[(a^(△x)]-1}/△x
=M/log【a】(M+1)
=1/log【a】[(M+1)^(1/M)]
当△x→0时,有M→0
故:
lim【△x→0】{[(a^(△x)]-1}/△x
=lim【M→0】1/log【a】[(M+1)^(1/M)]
=1/log【a】e
=lna
代入(1),有:
y'=(a^x)lim【△x→0】{[(a^(△x)]-1}/△x
y'=(a^x)lna