含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。
但是,若在平面直角坐标系中,例如直线方程“x=1”,直线上每一个点的横坐标x都有与其相对应的纵坐标y,这种情况下“x=1”是二元一次方程。此时,二元一次方程一般式满足ax+by+c=0(a、b不同时为0)。
判定二元一次方程必须同时满足三个条件
①方程两边的代数式都是整式——整式方程;
②含有两个未知数——“二元”;
③含有未知数的项的次数为1——“一次”。
加减消元法
加减法是消元法的一种,也是解二元一次方程组的基本方法之一。加减法不仅在解二元一次方程组中适用,也是今后解其他方程(组)经常用到的方法。
①变换系数:把一个方程或者两个方程的两边都乘以适当的数,使两个方程里的某一个未知数的系数互为相反数或相等;
②加减消元:把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;
③解这个一元一次方程,求得一个未知数的值;
④回代:将求出的未知数的值代入原方程组中,求出另一个未知数的值。
数学来源于生活又服务于生活,我们把生活实际中的问题,用设未知数的方法用二元一次方程来刻画,就把实际问题,转化成了数学问题,这种解题就是数学中的建模思想,它能化难为易化抽象为具体,也是我们学习方程的重点。
列方程组与列一元一次方程基本类似,只不过列二元一次方程组解应用题时,应从题目中找出两个独立的相等关系,根据这两个相等关系列方程组求解。尤其是在七年级没学好一元一次方程的同学,需要及时有效的补缺。