ax2+bx+c=0
b2-4ac≥0时,x有实数根
X1=[-b+√(b2-4ac)]/(2a)
X2=[-b-√(b2-4ac)]/(2a)
如果一个方程含有两个未知数,并且所含未知项都为1次方,那么这个整式方程就叫做二元一次方程,有无穷个解,若加条件限定有有限个解。二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。二元一次方程组,则一般有一个解,有时没有解,有时有无数个解。二元一次方程的一般形式:ax+by+c=0其中a、b不为零。这就是二元一次方程的定义。
①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数。
②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的)。
③解这个一元一次方程,求出未知数的,。
④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值。
⑤用“{”联立两个未知数的值,就是方程组的解。
⑥最后检验(代入原方程组中进行检验,方程是否满足左边=右边)。
以上是小编整理的有关二元一次方程的相关知识,希望对大家的学习有所帮助。