向量减法箭头指向口诀是箭头从减数向量的起点指向被减向量的终点,向量的加法,箭头从第一加数向量的起点指向最末向量的终点,向量加法可以用平行四边形法则和三角形法则。
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。
在数学中,向量指具有大小和方向的量,它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向,线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。
几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。
不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。
所谓的向量的线性运算是:向量之间的加减法和数乘运算,统称为向量的线性运算。这里必须注意的是,在向量的线性运算过程之中,规定先计算数乘向量,再按从左往右的顺序进行运算,若有括号,先算括号内各项。