(1)切线和圆只有一个公共点;
(2)切线和圆心的距离等于圆的半径;
(3)切线垂直于经过切点的半径;
(4)经过圆心垂直于切线的直线必过切点;
(5)经过切点垂直于切线的直线必过圆心。
切线的判定定理,经过半径的外端并且垂直于这条半径的直线是圆的切线。圆的切线垂直于这条圆的半径。
几何语言:∵l⊥OA,点A在⊙O上
∴直线l是⊙O的切线(切线判定定理)
切线的性质定理圆的切线垂直于经过切点半径
几何语言:∵OA是⊙O的半径,直线l切⊙O于点A
∴l⊥OA(切线性质定理)
推论1经过圆心且垂直于切线的直径必经过切点
推论2经过切点且垂直于切线的直线必经过圆心
圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。垂径定理的逆定理:平分弦的直径垂直于弦,并且平分弦所对的2条弧。圆有无数条半径和无数条直径,且同圆内圆的半径长度永远相同。圆是轴对称、中心对称图形。对称轴是直径所在的直线。是一条光滑且封闭的曲线,圆上每一点到圆心的距离都是相等,到圆心的距离为R的点都在圆上。