1、“三线八角”
①如何由线找角:一看线,二看型。
同位角是“F”型;
内错角是“Z”型;
同旁内角是“U”型。
②如何由角找线:组成角的三条线中的公共直线就是截线。
2、平行公理:
如果两条直线都和第三条直线平行,那么这两条直线也平行。
简述:平行于同一条直线的两条直线平行。
补充定理:
如果两条直线都和第三条直线垂直,那么这两条直线也平行。
简述:垂直于同一条直线的两条直线平行。
3、平行线的判定和性质:
判定定理,性质定理
条件,结论,条件,结论
同位角相等,两直线平行,两直线平行,同位角相等
内错角相等,两直线平行,两直线平行,内错角相等
同旁内角互补,两直线平行,两直线平行,同旁内角互补
4、图形平移的性质:
图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。
5、三角形三边之间的关系:
三角形的.任意两边之和大于第三边;
三角形的任意两边之差小于第三边。
6、三角形中的主要线段:
三角形的高、角平分线、中线。
注意:①三角形的高、角平分线、中线都是线段。
②高、角平分线、中线的应用。
7、三角形的内角和:
三角形的3个内角的和等于180°;
直角三角形的两个锐角互余;
三角形的一个外角等于与它不相邻的两个内角的和;
三角形的一个外角大于与它不相邻的任意一个内角。
8、多边形的内角和:
n边形的内角和等于(n-2)180°;
任意多边形的外角和等于360°。
1、数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2、相反数:实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3、倒数:若两个数的积等于1,则这两个数互为倒数。
4、有理数比大小:正数的绝对值越大,这个数越大;正数永远比0大,负数永远比0小;正数大于一切负数;两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数>0,小数-大数<0。
5、一元一次方程的概念:只含有一个未知数,并且未知数的次数是1的方程叫一元一次方程。任何形式的一元一次方程,经变形后,总能变成形为ax=b(a≠0,a、b为已知数)的形式,这种形式的方程叫一元一次方程的一般式,注意a≠0。
6、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。
7、等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式。
8、三角形的三边关系定理:三角形的两边之和大于第三边;三角形三个内角和等于180°;三角形的一个外角等于和它不相邻的来两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角。
9、对顶角相等:有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角;两条直线相交,有2对对顶角。
10、两条直线相交:所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的。垂线,它们的交点叫做垂足。