定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)
则称y为x的二次函数,二次函数表达式的右边通常为二次三项式。
二次函数的三种表达式
一般式:y=ax^2;+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2;+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2;)/4a x1,x2=(-b±√b^2;-4ac)/2a
抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P [ -b/2a ,(4ac-b^2;)/4a ]。当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
把握要点(也是中考的考点及要求)
1.理解二次函数概念、性质、含画二次函数的图像。
2.能确定抛物线的开口方向,顶点坐标,对称轴方程,以及抛物线与坐标轴的交点坐标。
3.含根据不同条件确定二次函数的解析式。
4.灵活运用函数思想,数形结合思想解决问题。
认识二次函数的一般式
将它的右边配方,就可以得到顶点式:所以我们就有了用公式法求一般式的开口,对称轴,顶点坐标。由此我们还知道了,a,b是共同来决定它们的对称轴。