连接梯形两腰中点的线段叫做梯形的中位线,梯形的中位线平行于两底,并且等于两底和的一半。
梯形的中位线L平行于底边,且其长度为上底加下底和的一半,用符号表示是:L=(a+b)/2。
已知中位线长度和高,就能求出梯形的面积:S梯=2Lh÷2=Lh。
中位线在关于梯形的各种题型中都是一条得天独厚的辅助线。
如果我们指定(定义):四边形一组对边为腰,另一组对边为底,两腰中点连线称为四边形的中位线。于是有命题:“如果四边形的中位线等于两底和的一半,那么这个四边形是梯形”成立。这一命题被称为梯形的判定定理。
面积公式:梯形中位线×高=(上底+下底)×高÷2=梯形面积 [3]
梯形中位线到上下底的距离相等
中位线长度=(上底+下底)÷2