1、注意零向量的方向是无法确定的。但我们规定:零向量的方向与任一向量平行,与任意向量共线,与任意向量垂直。
2、零向量的方向不确定,但模的大小确定。但是注意向量与向量不能比较大小。例如,若向量a的模大于零,则向量a大于零向量的说法是错误的,因为实数之间可用比较大小,而向量之间不能比较大小。
3、零向量与任意向量的数量积为0。
这是平行向量概念中的明确规定,也就是说零向量与任意向量都是共线的;这种规定使得任意两个平面向量的位置关系只有两种:共线或不共线,二者必居其一,也就是说平面向量可以分为两类:一类是共线向量,一类是不共线向量;不共线的两个向量一定是两个非零向量。