1、符号不同:点乘的符号用“·”表示;叉乘的符号用“×”表示。
2、结果不同:点乘得到的结果是一个数值;叉乘得到的结果是一个向量。
3、计算过程不同:点乘是两个向量的模的乘积再乘上两个向量夹角的余弦值;叉乘是两个矢量的模的乘积再乘上这两个向量夹角的正弦值。
矢量是一种既有大小又有方向的量,又称为向量。矢量点乘和叉乘运算法则:点乘,也叫向量的内积、数量积。运算法则为向量a乘向量b=allbcos。叉乘,也叫向量的外积、向量积。运算法则为向量c=向量a乘向量b=absin。
1、点乘,也叫向量的内积、数量积。顾名思义,求下来的结果是一个数。向量a乘向量b=abcos。在物理学中,已知力与位移求功,实际上就是求向量F与向量s的内积,即要用点乘。
2、叉乘,也叫向量的外积、向量积。顾名思义,求下来的结果是一个向量,记这个向量为c。向量c=向量a乘向量b=absin,向量c的方向与ab所在的平面垂直,且方向要用“右手法则”判断用右手的四指先表示向量a的方向,然后手指朝着手心的方向摆动到向量b的方向,大拇指所指的方向就是向量c的方向。
点乘是向量的内积,叉乘是向量的外积。
点乘,也叫数量积。结果是一个向量在另一个向量方向上投影的长度,是一个标量。顾名思义,求下来的结果是一个数。
叉乘,也叫向量积。结果是一个和已有两个向量都垂直的向量。求下来的结果是一个向量。