没有。
无界数列一定发散,数列有界是数列存在极限的必要条件;但发散的数列不一定无解(比如{(-1)^n})。
发散数列就是当n趋近正无穷时,数列an总是不能接近某一个具体的数值,换句话说就是数列an没有极限,这样的数列就是发散数列。数列是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。
发散数列就是当n趋近正无穷时,an总是不能接近某一个具体的数值,换句话说就是an没有极限这样的数列就是发散数列。
如果一个级数是收敛的,这个级数的项一定会趋于零。因此,任何一个项不趋于零的级数都是发散的。不过,收敛是比这更强的要求:不是每个项趋于零的级数都收敛。其中一个反例是调和级数。
集合中的元素是互异的,而数列中的项可以是相同的。集合中的元素是无序的,而数列中的项必须按一定顺序排列,也就是必须是有序的。