1、记表达式
二次函数的表达式有一般式、顶点式和交点式,孩子一定要记清楚,并且知道三种表达式之间的转化关系,尤其是一般式要能熟练地化成顶点式。另外,孩子还需要弄清楚二次项系数、一次项系数及常数项,清楚二次项系数不能为零,自变量最高指数是。
2、额外去学习和练习
孩子在学校同步学习的同时,需要同学们额外去学习和练习,学习常规题型的处理方法和技巧。例如直角三角形存在性问题中,如何进行有效的分类讨论,有几种方法可以解决问题等。
3、参加课外补习班
孩子初三学不懂二次函数一定要及时的参加补习班!因为二次函数的初三的新知识,而且在中考中二次函数的比重占的很大,中考每年的最后一道大题都是二次函数,而且分值也是最高的。由此可见二次函数的重要性。所以一旦发现孩子在二次函数上遇到困难,一定要及时的补起来。这样孩子才能更有自信的面对中考。
解题技巧:1.要理解函数的意义。2.要记住函数的几个表达形式,注意区分。3.一般式,顶点式,交点式,等,区分对称轴,顶点,图像,y随着x的增大而减小(增大)(增减值)等的差异性。4.联系实际对函数图像的理解。5.计算时,看图像时切记取值范围。6.随图像理解数字的变化而变化。
一般地,我们把形如y=ax2+bx+c(其中a,b,c是常数,a≠0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。
二次函数顶点式公式:
(1)一般式:y=ax2+bx+c (a,b,c为常数,a≠0),则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a)。
(2)顶点式:y=a(x-h)2+k或y=a(x+m)^2+k(a,h,k为常数,a≠0)。
(3)交点式(与x轴):y=a(x-x1)(x-x2)。
(4)两根式:y=a(x-x1)(x-x2),其中x1,x2是抛物线与x轴的交点的横坐标,即一元二次方程ax2+bx+c=0的两个根,a≠0。
说明:
(1)任何一个二次函数通过配方都可以化为顶点式y=a(x-h)2+k,抛物线的顶点坐标是(h,k),h=0时,抛物线y=ax2+k的顶点在y轴上;当k=0时,抛物线a(x-h)2的顶点在x轴上;当h=0且k=0时,抛物线y=ax2的顶点在原点。
(2)当抛物线y=ax2+bx+c与x轴有交点时,即对应二次方程ax2+bx+c=0有实数根x1和x2存在时,根据二次三项式的分解公式ax2+bx+c=a(x-x1)(x-x2),二次函数y=ax2+bx+c可转化为两根式y=a(x-x1)(x-x2)。